发布时间:2020-06-23 22:55:43 人气: 来源:
相关浪涌保护设计的电子衡器技术
一、电子衡器和全电子衡器
电子衡器是装有电子装置的衡器。 这里的电子装置, 是指用电子部件构成并且执行特定 功能的一种装置。他通常是一个独立的单元,并且能单独的进行试验或检测。电子装置可以 是一台完整的衡器, 也可以是衡器的一部分, 其功能是把被称物体的质量转换为与之成正比 的电信号,并由此产生数字式或模拟式指示的质量信息。
全电子汽车衡是指载荷传递装置或力比较部分中没有机械杠杆, 载荷测量装置或抗力部
分只用称重传感器的一种电子衡器。
对于电子衡器的浪涌保护一般有两个部分; 一是在电子衡器的电源端加装相应的过电压 保护装置,以消除电网浪涌、雷电感应电压、设备切换等意外事件对电子衡器设备的冲击和 毁坏; 二是在电子衡器中的称重仪表和称重传感器中增加浪涌保护设计, 称重传感器的输出 信号为毫伏级,所以增加浪涌保护在雷击等场合尤为重要。
二、浪涌电压
电路在遭雷击和在接通、 断开电感负载或大型负载时常常会产生很高的操作过电压, 这 种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰:例如直流 6V 继电器线圈断开时会出现 300V~600V 的浪涌电压;接通白炽灯时会出现 8~10 倍额定电流 的浪涌电流;当接通大型容性负载如补偿电容器组时,常会出现大的浪涌电流冲击,使得电 源电压突然降低; 当切断空载变压器时也会出现高达额定电压 8~10 倍的操作过电压。 浪涌 电压现象日趋严重地危及自动化设备安全工作, 消除浪涌噪声干扰、 防止浪涌损害一直是关 系到自动化设备安全可靠运行的核心问题。 现代电子设备集成化程度在不断提高, 但是它们 的抗御浪涌电压能力却在下降。在多数情况下,浪涌电压会损坏电路及其部件,其损坏程度 与元器件的耐压强度密切相关,并且与电路中可以转换的能量相关。为了避免浪涌电压击毁敏感的自动化设备, 必须使出现这种浪涌电压的导体在非常短的 时间内同电位均衡系统短接(引入大地)。在其放电过程中,放电电流可以高达几千安,与 此同时,人们往往期待保护单元在放电电流很大时也能将输出电压限定在尽可能低的数值 上。因此,空气火花间隙、充气式过电压放电器、压敏电阻、雪崩二极管、TVS、FLASHTRAB、 VALETRAB、SOCKETTRAB、MAINTRAB 等元器件,是单独或以组合电路形式被应用到被保护电 路中,因为每个元器件有其各自不同的特性,并且具有不同的性能:放电能力;响应特性; 灭弧性能;限压精度。根据不同的应用场合以及设备对浪涌电压保护的要求,可根据产品的 特性来组合出符合应用要求的过电压保护系统。
三、浪涌保护器
浪涌保护器分过电压保护元件和过电流保护元件。我们通常所称的“避雷器”和随着国 外防雷器件引入的“浪涌抑制器”、“过电压限制器”、放电管、齐纳二极管等都属于电压 限制元件。浪涌噪声常用浪涌吸收器进行抑制,常用的浪涌吸收器有:
1、氧化锌压敏电阻
氧化锌压敏电阻是以氧化锌为主体材料制成的压敏电阻, 其电压非线性系数高, 容量大、 残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小, 且具有工艺简单、成本低廉等优点,是目前广泛使用的浪涌电压保护器件。适用于交流电源 电压的浪涌吸收、各种线圈、接点间浪涌电压吸收及灭弧,三极管、晶闸管等电力电子器件 的浪涌电压保护。
2、RCD 组合浪涌吸收器
RCD 组合浪涌吸收器比较适用于直流电路,可根据电路的特性对器件进行不同的组合, 如图 1(a)适用于高电平直流控制系统,而图 1(b)中采用齐纳稳压管或双向二极管,适 用于正反向需要保护的电路。
(a)单向保护
图1
(b)双向保护
RCD 浪涌保护器
3、瞬态电压抑制器(TVS)
当 TVS 两极受到反向高能量冲击时, 它能以 10-12s 级的速度, 将其两极间的阻抗由高 变低,吸收高达数 kW 的浪涌功率,使两极的电位箝位于预定值,有效地保护自动化设备中 的元器件免受浪涌脉冲的损害。TVS 具有响应时间快、瞬态功率大、漏电流低、击穿电压偏 差小、箝位电压容易控制、体积小等优点,目前被广泛应用于电子设备等领域。
① TVS 的特性
其正向特性与普通二极管相同,反向特性为典型的 PN 结雪崩器件。图 2 是 TVS 的电流 -时间和电压-时间曲线。 在浪涌电压的作用下, TVS 两极间的电压由额定反向关断电压 VWM上升到击穿电压 V br 而被击穿。随着击穿电流的出现,流过 TVS 的电流将达到峰值脉冲电流 I PP ,同时在其两端的电压被箝位到预定的最大箝位电压 V C 以下。其后,随着脉冲电流按
指数衰减,TVS 两极间的电压也不断下降,最后恢复到初态,这就是 TVS 抑制可能出现的浪 涌脉冲功率,保护电子元器件的过程。
图2
TVS 电压(电流)时间特性
② TVS 与压敏电阻的比较
目前,国内不少需要进行浪涌保护的设备上应用压敏电阻较为普遍,TVS 与压敏电阻性
能比较如表 1 所示:
参
数
TVS
压敏电阻
反应速度
是否老化
最高使用温度
器件极性
反向漏电流
箝位因子 VC/Vbr
封闭性质
价格
10-12s
否
175℃
单双极性
5μA
不大于 15
密封
较贵
50×10-9s
是
115℃
单极性
200μA
最大 7~8
透气
便宜
表1
TVS 与压敏电阻的比较
四 综合浪涌保护系统
1 三级保护
电子衡器称重系统所需的浪涌保护应在系统设计中进行综合考虑,针对电子衡器的特 性,应用于该系统的浪涌保护器基本上可以分为三级,对于电子衡器的供电设备来说,需要雷击电流放电器、过压放电器以及终端设备保护器。数据通信和测控技术的接口电路,比供 电系统电路显然要灵敏得多,所以必须对数据接口电路进行保护。
电子衡器装置的供电设备的第一级保护采用的是雷击电流放电器, 为保证后续设备不承 受太高的残压,必须根据被保护范围的性质,在下级设备中安装过电压放电器,作为二级保 护措施。第三级保护是为了保护仪器设备,采取的方法是,把过电压放电器直接安装在仪器 的前端。电子称重控制系统三级保护布置如图 3 所示。在不同等级的放电器之间,必须遵守 导线的最小长度规定。供电系统中雷击电流放电器与过压放电器之间的距离不得小于 10m, 过压放电器同仪器设备保护装置之间的导线距离则不应小于 5m。
图 3 放电器分布图
2 三级保护器件
(1) 充有惰性气体的过电压放电器是自动控制系统中应用较广泛的一级浪涌保护器件。 充有惰性气体过电压放电器,一般构造的这类放电器可以排放 20kA(8/20μs)或者 2.5kA (10/350μs)以内的瞬变电流。气体放电器的响应时间处于 ns 范围,被广泛地应用于远程 通信范畴。 该器件的一个缺点是它的触发特性与时间相关, 其上升时间的瞬变量同触发特性 曲线在几乎与时间轴平行的范围里相交。 因此保护电平将同气体放电器额定电压相近。 而特 别快的瞬变量将同触发曲线在十倍于气体放电器额定电压的工作点相交, 也就是说, 如果某 个气体放电器的最小额定电压 90V, 那么线路中的残压可高达 900V。 它的另一个缺点是可能 会产生后续电流。在气体放电器被触发的情况下,尤其是在阻抗低、电压超过 24V 的电路中 会出现下列情况: 即原来希望维持几个 ms 的短路状态, 会因为该气体放电器继续保持下去, 由此引起的后果可能是该放电器在几分之一秒的时间内爆碎。 所以在应用气体放电器的过电 压保护电路中应该串联一个熔断器,使得这种电路中的电流很快地被中断。
(2) 压敏电阻被广泛作为系统中的二级保护器件, 因压敏电阻在 ns 时间范围内具有更 快的响应时间,不会产生后续电流的问题。在测控设备的保护电路中,压敏电阻可用于放电 电流为 2.5kA~5kA (8/20μs) 的中级保护装置。 压敏电阻的缺点是老化和较高的电容问题, 老化是指压敏电阻中二极管的 PN 部分,在通常过载情况下,PN 结会造成短路,其漏电流将 因此而增大, 其值的大小取决于承载的频繁程度。 其应用于灵敏的测量电路中将造成测量失 真,并且器件易发热。压敏电阻大电容问题使它在许多场合不能应用于高频信息传输线路,这些电容将同导线的电感一起形成低通环节,从而对信号产生严重的阻尼作用。不过,在 30kHz 以下的频率范围内,这一阻尼作用是可以忽略的。
(3)抑制二极管一般用于高灵敏的电子电路,其响应时间可达 ps 级,而器件的限压值 可达额定电压的 1.8 倍。其主要缺点是电流负荷能力很弱、电容相对较高,器件自身的电容 随着器件额定电压变化,即器件额定电压越低,电容则越大,这个电容也会同相连的导线中 的电感构成低通环节,而对数据传输产生阻尼作用,阻尼程度与电路中的信号频率相关。
五 总结
目前,电子衡器和电子称重系统广泛应用于贸易结算、冶金、化工、铁路等各个领域与 行业。 其应用环境也是相当复杂, 浪涌电压以及雷击等环境对电子衡器的破坏能力不可估量。 浪涌电压和雷击影响的环境也是比较复杂,我们必须分析现场、积累经验,充分利用各种有 效手段来解决它们对系统造成的损害。